Abstract-Synthetic aperture radar (SAR) raw signal simulation is profoundly useful for validating SAR system design parameters, testing the effectiveness of different processing algorithms, studying the effects of motion errors, etc. Simulating signal data in frequency domain is more efficient than in time domain. However, the former is difficult account for the effects of both sensor trajectory deviations and antenna pointing error for the stripmap SAR mode. In this paper, we attempt to extend the possibility of the Fourier domain approach to account for trajectory deviations as well as antenna beam pointing errors, which is more concerned for airborne SAR systems. After demonstrating a full two-dimensional Fourier domain simulation, an efficient simulation approach is proposed under certain reasonable assumptions. The proposed approach has higher computational efficiency than simulation in time-domain and also allows for imaging an extended scene. The validity of the proposed approaches is analyzed and discussed. Finally, numerical examples are presented to verify the effectiveness and efficiency of the approach.