The geometries, stabilities, and electronic properties of new endohedral fullerene YCN@C72 have been investigated by the B3LYP and PBE1PBE density functional (DFT) methods. The C2v(11188)‐C72 cage, which violates the isolated pentagon rule (IPR) with a pair of fused pentagons, is predicted to be the lowest energy isomer for both empty
normalC722‐ and YCN@C72. The relatively large HOMO‐LUMO gap (B3LYP: 1.48 eV, PBE1PBE: 1.68 eV) for YCN@C2v(11188)‐C72 reveals this structure kinetic stability. Significantly, the encased YCN cluster adopts a triangular structure inside the C2v(11188)‐C72 cage, similar to the results reported on YCN@Cs(6)‐C82 and TbCN@C2(5)‐C82. Furthermore, the vertical ionization potential and electron affinity, UV‐vis‐NIR and IR spectra of YCN@C2v(11188)‐C72 have been predicted to facilitate future experimental characterization. © 2015 Wiley Periodicals, Inc.