Abstract. Differential geometric guidance command (DGGC) is widely acknowledged as a better method of endoatmospheric interception than three-dimensional (3D) pure proportional navigation (PPN). DGGC can be regarded as an intelligent method due to its sophisticated sense of Lyapunov. However, traditional DGGC cannot guarantee line of sight (LOS) finite time convergence (FTC) to zero against maneuvering targets, particularly in regard to a stable, robust trajectory, which effectively lowers the overall intelligence of the method. This study proposes employment of the fuzzy self-adaptive guidance law to estimate target acceleration and enhance guidance intelligence, which in turn enhances the intelligence of the traditional DGGC method, making it more adaptive and applicable to practical interception scenarios. Finally, the effectiveness of this newly-proposed guidance method is demonstrated by numerical simulation.