2021
DOI: 10.1016/j.neucom.2020.12.067
|View full text |Cite
|
Sign up to set email alerts
|

Geometric attentional dynamic graph convolutional neural networks for point cloud analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 51 publications
(11 citation statements)
references
References 6 publications
0
8
0
3
Order By: Relevance
“…These works illustrate that the geometry representation of 3D shapes is important for point cloud understanding. Nevertheless, the authors in [ 28 ] expand the concept of DGCNN [ 8 ] to capture not only the intrinsic features of point cloud but also the extrinsic ones so that the network can learn geometry representations better. Similarly, an EdgeConv based feature fusion method is adopted by [ 29 ], in which an adaptive feature fusion module helps to learn both global and local features.…”
Section: Related Workmentioning
confidence: 99%
“…These works illustrate that the geometry representation of 3D shapes is important for point cloud understanding. Nevertheless, the authors in [ 28 ] expand the concept of DGCNN [ 8 ] to capture not only the intrinsic features of point cloud but also the extrinsic ones so that the network can learn geometry representations better. Similarly, an EdgeConv based feature fusion method is adopted by [ 29 ], in which an adaptive feature fusion module helps to learn both global and local features.…”
Section: Related Workmentioning
confidence: 99%
“…Además, este tipo de estructuras puede ser fácilmente codificado en cadenas de bits, reduciendo así el tiempo de acceso a las celdas de las mismas. OctNet, por ello, permite trabajar con vóxeles de alta resolución, concretamente, resoluciones superiores a 64 3 . Los resultados obtenidos al trabajar con resoluciones altas son mejores que los obtenidos con resoluciones bajas, siendo los mejores resultados los obtenidos con 64 3 .…”
Section: Octnetunclassified
“…A pesar de ello, el uso de la transformación Χ necesita un conocimiento exhaustivo del operador cuando se pretende aplicar a una red neuronal. Por otro lado, presenta resultados prometedores en segmentación en comparación con métodos como PointNet/PointNet++, SO-Net, DGCNN [3] o SGPN [16]. En clasificación, PointCNN ofrece peores resultados con respecto a otros métodos.…”
Section: Pointcnnunclassified
See 1 more Smart Citation
“…However, it lacked the ability to extract local information, and it was inappropriate to extract the nearest neighbors under the uneven density of point cloud. The point cloud learning networks [32][33][34] under normalized input strongly depend on data sources. The point cloud is affected by the acquisition equipment and the coordinate system, and its arrangement is changeable.…”
mentioning
confidence: 99%