1991
DOI: 10.1111/j.1365-2478.1991.tb00309.x
|View full text |Cite
|
Sign up to set email alerts
|

GEOMETRIC CORRECTIONS IN ATTENUATION MEASUREMENTS1

Abstract: KLIMENTOS, T. 1991. Geometric corrections in attenuation measurements. Geophysical Prospecting 39, 193-218. Seismic wave attenuation in porous rocks consists of intrinsic or anelastic attenuation (the lost energy is converted into heat due to interaction between the waves and the rocks) and the extrinsic or geometric attenuation (the energy is lost due to beam spreading, transmission loss and scattering). The first is of great importance because it can give additional information on the petrophysical proper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
1
0
2

Year Published

1993
1993
2021
2021

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 18 publications
(20 reference statements)
1
1
0
2
Order By: Relevance
“…In addition, for the three types of rocks, the attenuation coefficient increases rapidly as frequency increases. This frequency dependence has been observed by other researchers (Winkler and Plona, 1982;Klimentos, 1991;Toksöz et al, 1989). Furthermore, the attenuation coefficient curves show that the attenuation coefficient is dispersive, i.e., it varies depending on the frequency.…”
Section: Frequency Dependence Of Attenuation Coefficientsupporting
confidence: 87%
“…In addition, for the three types of rocks, the attenuation coefficient increases rapidly as frequency increases. This frequency dependence has been observed by other researchers (Winkler and Plona, 1982;Klimentos, 1991;Toksöz et al, 1989). Furthermore, the attenuation coefficient curves show that the attenuation coefficient is dispersive, i.e., it varies depending on the frequency.…”
Section: Frequency Dependence Of Attenuation Coefficientsupporting
confidence: 87%
“…An empirical "self-spectral ratio" method for estimating the diffraction effect for compressional waves has been described by Klimentos [1991]. It is also appropriate for shear wave diffraction and could be used as an alternative to the formula-based corrections discussed above.…”
Section: Results For a High-q Reference Materialsmentioning
confidence: 99%
“…Embora menos difundidas, tem-se proposto outras técnicas de medida de atenuação. Klimentos (1991) sugere três técnicas buscando evitar problemas geométricos na determinação de atenuação em laboratório. Na técnica de lentes ultra-sônicas coloca-se uma lente ultra-sônica entre o emissor e a amostra de modo a que o feixe apresente incidência normal, evitando-se divergência geométrica; na técnica de receptor panorâmico varrem-se os possíveis ângulos de recepção com um transdutor pequeno, analisando-se o sinal composto pela soma de todas das recepções, eliminando assim os efeitos de alargamento do feixe.…”
Section: -Outras Técnicas De Transmissãounclassified
“…Enquanto na área de perfilagem aceita-se a relação entre o comportamento da onda Stoneley, que é uma onda superficial, e a permeabilidade (Burns e Cheng, 1986;Winkler et al 1989), existem sérias controvérsias quanto à obtenção de permeabilidades a partir das ondas cisalhantes e compressionais. Alguns autores afirmam a inexistência de relações entre permeabilidade e velocidades (Klimentos, 1991;Best et al, 1994), mas outros apresentam evidências experimentais e teóricas de claras correlações entre estas grandezas (Vernik, 1994;Vasquez e Dillon, 1994;Shapiro e Müller, 1999).…”
Section: -Outros Fatoresunclassified