2020
DOI: 10.1093/integr/xyaa003
|View full text |Cite
|
Sign up to set email alerts
|

Geometric curve flows in low dimensional Cayley–Klein geometries

Abstract: Using the method of equivariant moving frames, we derive the evolution equations for the curvature invariants of arc-length parametrized curves under arc-length preserving geometric flows in two-, three- and four-dimensional Cayley–Klein geometries. In two and three dimensions, we obtain recursion operators, which show that the curvature evolution equations obtained are completely integrable.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?