2013
DOI: 10.1016/j.laa.2012.07.021
|View full text |Cite
|
Sign up to set email alerts
|

Geometric distance-regular graphs without 4-claws

Abstract: A non-complete distance-regular graph is called geometric if there exists a set C of Delsarte cliques such that each edge of lies in a unique clique in C. In this paper we determine the non-complete distance-regular graphs satisfying max 3, 8 3 (a 1 + 1) < k < 4a 1 + 10 − 6c 2 . To prove this result, we first show by considering nonexistence of 4-claws that any non-complete distance-regular graph satisfying max 3, 8 3 (a 1 + 1) < k < 4a 1 + 10 − 6c 2 is a geometric distance-regular graph with smallest eigenval… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
12
0
2

Year Published

2013
2013
2021
2021

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(14 citation statements)
references
References 19 publications
0
12
0
2
Order By: Relevance
“…For the case of distance-regular graphs of diameter 3 we use two recent classification results for geometric distance-regular graphs with smallest eigenvalue −3 proven by Bang [11] and Bang, Koolen [12]. Since Bang's classification result includes a lot of cases we state here the short corollary of her result that fits our purposes.…”
Section: Every Vertex Has Fewer Thanmentioning
confidence: 99%
See 1 more Smart Citation
“…For the case of distance-regular graphs of diameter 3 we use two recent classification results for geometric distance-regular graphs with smallest eigenvalue −3 proven by Bang [11] and Bang, Koolen [12]. Since Bang's classification result includes a lot of cases we state here the short corollary of her result that fits our purposes.…”
Section: Every Vertex Has Fewer Thanmentioning
confidence: 99%
“…In the remaining case, we use Metsch's criteria for geometricity (see Theorem 3.25) to show that X is a geometric distance-regular graph with smallest eigenvalue −m, where m is bounded above by a function of the diameter. In the case of diameter 3 we obtain a tight bound on m, reducing the problem to geometric distance-regular graphs with smallest eigenvalue −3 and we use the almost complete classification of such graphs obtained by Bang [11] and Bang, Koolen [12] (see Theorem 3.34 in this paper). No analogous classification for the geometric distance-regular graphs with smallest eigenvalue −m appears to be known for m ≥ 4.…”
Section: General Outline Of the Proofsmentioning
confidence: 99%
“…Bang and Koolen [17] proved that all but finitely many distance-regular graphs with smallest eigenvalue −m and µ ≥ 2 are geometric. For geometric distance-regular graphs with smallest eigenvalue ≥ −3 and µ ≥ 2 Bang [6] and Bang, Koolen [7] gave a complete classification. Moreover, they conjectured [17,Conjecture 7.4] that for any integer m all but finitely many geometric distance-regular graphs with smallest eigenvalue −m and µ ≥ 2 are known.…”
Section: Graphs With Bounded Smallest Eigenvaluementioning
confidence: 99%
“…В работе [5] изучались геометрические дистанционно регулярные графы с наименьшим собственным значением −3 (следовательно, не содержащие 4-лап). В [5, теорема 4.3] все графы с таким свойством перечислены в 12-и классах (в каждом из которых с точностью до некоторых параметров указан массив пересечений).…”
Section: Introductionunclassified
“…В одном из этих классов все графы имеют диаметр три, а массив пересечений имеет вид {3α+3, 2α+2, α+2−β; 1, 2, 3β}, где α β 1 целые числа. Из списка [1] допустимых массивов пересечений дистанционно регулярных графов (с небольшим числом вершин) в этот класс попадают только массивы графов Хэмминга H(3, α+2) и графа Дуба диаметра 3 (при β = 1), и массив пересечений {45, 30, 7; 1, 2, 27} (при α = 14, β = 9), для которого существование соответствующего графа, как отмечает автор [5], неизвестно.…”
Section: Introductionunclassified