Polarization, denoting the precession direction with respect to the background magnetization, is an intrinsic degree of freedom of spin wave. Using magnetic textures to control the spin wave polarization is fundamental and indispensable toward reprogrammable polarization-based magnonics. Here, we show that due to the intrinsic cubic anisotropy, a 90 • antiferromagnetic domain wall naturally acts as a spin wave retarder (wave-plate). Moreover, for a 90 • domain wall pair developed by introducing a second domain in a homogenous antiferromagnetic wire, the sign of retarding effect can be flipped by simply switching the direction of the intermediate domain. The intimate connection between rich states of magnetic domains and the spin wave polarization in cubic anisotropic systems, offers new possibilities in constructing purely magnetic logic devices.