Научно-технический вестник информационных технологий, механики и оптики,
АннотацияИсследована задача синтеза траекторного управления движением мобильного робота в нестационарном внешнем окружении, в частности, при наличии в рабочем пространстве робота внешних подвижных объектов, с использованием методов дифференциальной геометрии и методов стабилизации инвариантных многообразий в пространстве выходов объекта управления. Для построения алгоритма управления рассмотрена относительная динамика объекта управления и внешнего подвижного объекта, и применяются методы дифференциально-геометрического преобразования исходной модели к задачно-ориентированной системе координат, формулирующей исходную задачу в терминах продольного движения, ортогонального и углового отклонений, для которой строятся пропорционально-дифференциальные алгоритмы управления с прямой компенсацией нелинейностей. Основные результаты представлены задачно-ориентированной моделью пространственного движения и соответствующими нелинейными алгоритмами управления. Для иллюстрации работоспособности предлагаемого метода приведен пример моделирования движения твердого тела вдоль прямолинейной траектории при наличии в рабочем пространстве внешнего подвижного объекта, движущегося по прямолинейной траектории, пересекающей желаемую траекторию движения объекта управления. В примере реализован обход внешнего движущегося объекта по круговой траектории и возврат на исходную желаемую траекторию. Ключевые слова траекторное управление, преобразование координат, управление движением Благодарности Работа выполнена при поддержке: гранта Президента Российской Федерации №14.Y3116.9281-НШ; Российского фонда фундаментальных исследований (грант 17-58-53129); гранта Государственного фонда естественных наук Китая (грант 61611530709 и 61503108). Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 790-797 (in Russian). doi: 10.17586/2226-1494-2017 Abstract The paper deals with the trajectory control synthesis of a mobile robot movement in a nonstationary external environment, in particular, in the presence of external mobile objects in the robot working space, by differential geometry methods and stabilization methods for invariant manifolds in the space of control object outputs. For control algorithm development, the relative dynamics of the control object and the external mobile object is considered and the methods of differential-geometric transformation of the initial model to the task-oriented coordinates are formulated. The latter formulates the initial problem in terms of longitudinal motion, orthogonal and angular deviations, and the proportional differential control algorithms are
TRAJECTORY CONTROL FOR A ROBOT MOTION IN PRESENSE OF MOVING OBSTACLES