2020
DOI: 10.1088/1674-1056/ab6963
|View full text |Cite
|
Sign up to set email alerts
|

Geometric phase of an open double-quantum-dot system detected by a quantum point contact*

Abstract: We study theoretically the geometric phase of a double-quantum-dot (DQD) system measured by a quantum point contact (QPC) in the pure dephasing and dissipative environments, respectively. The results show that in these two environments, the coupling strength between the quantum dots has an enhanced impact on the geometric phase during a quasiperiod. This is due to the fact that the expansion of the width of the tunneling channel connecting the two quantum dots accelerates the oscillations of the electron betwe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
4

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 82 publications
0
4
0
1
Order By: Relevance
“…通过结合 MT 与 ML 速度极限时间,给出了封闭系统量子速度极限时间统一界 .非马尔可 夫效应已经被证实了可以加速系统的演化,为了提高演化速度,人们对各种量子体系的速度极限不 等式展开了深入研究 [17][18][19][20][21] .2016 年,Cai 和 Zheng 采用迹距离度量推导了非平衡环境下的 MT 与 ML 时间界,证实了体系的非马尔可夫特性对加速系统演化的必要不充分性质 [22] .2019 年,Sun 和 Zheng 基于量子几何相位和几何相位变化率, 在量子态矢量于流形空间中平行传输的条件下得出 不同于 MT 和 ML 类型的时间界,且通过化简可以回到 ML 的结果 [23,24] . 单量子点具有操作性强、 易观测、 可制备等优点,它涉及到量子力学基本原理在实际中的应用, 表现出独特的量子特性,比如量子隧道效应、库仑阻塞效应、局域化效应、表面效应等等.1997 年 Gurvitz 将其与量子点接触探测器结合,研究了在测量过程中孤立量子点系统内电子转移的动力学 演化机制,并在 2003 年将量子点系统与耗散环境耦合,表明弛豫会破坏测量过程的芝诺效应 [25,26] .2010 年,Ouyang 和 You 通过占有态和本征态两种方法得到电子运动的主方程,分析了不同外 界环境下量子点系统的输运特性 [27] .科学工作者们对量子点的转移与输运等特性做出了大量探索, 并对耗散环境中电子转移过程的量子速度极限开展了深刻的研究 [28][29][30][31][32][33][34][35][36] ,但开放量子点系统输运过…”
Section: 引言unclassified
“…通过结合 MT 与 ML 速度极限时间,给出了封闭系统量子速度极限时间统一界 .非马尔可 夫效应已经被证实了可以加速系统的演化,为了提高演化速度,人们对各种量子体系的速度极限不 等式展开了深入研究 [17][18][19][20][21] .2016 年,Cai 和 Zheng 采用迹距离度量推导了非平衡环境下的 MT 与 ML 时间界,证实了体系的非马尔可夫特性对加速系统演化的必要不充分性质 [22] .2019 年,Sun 和 Zheng 基于量子几何相位和几何相位变化率, 在量子态矢量于流形空间中平行传输的条件下得出 不同于 MT 和 ML 类型的时间界,且通过化简可以回到 ML 的结果 [23,24] . 单量子点具有操作性强、 易观测、 可制备等优点,它涉及到量子力学基本原理在实际中的应用, 表现出独特的量子特性,比如量子隧道效应、库仑阻塞效应、局域化效应、表面效应等等.1997 年 Gurvitz 将其与量子点接触探测器结合,研究了在测量过程中孤立量子点系统内电子转移的动力学 演化机制,并在 2003 年将量子点系统与耗散环境耦合,表明弛豫会破坏测量过程的芝诺效应 [25,26] .2010 年,Ouyang 和 You 通过占有态和本征态两种方法得到电子运动的主方程,分析了不同外 界环境下量子点系统的输运特性 [27] .科学工作者们对量子点的转移与输运等特性做出了大量探索, 并对耗散环境中电子转移过程的量子速度极限开展了深刻的研究 [28][29][30][31][32][33][34][35][36] ,但开放量子点系统输运过…”
Section: 引言unclassified
“…In other words, the interaction with the pure dephasing environment has stimulative effect on the oscillation of the electron during the evolution. [45] The enhancement of the CPS represents that the oscillation of the electron is slowed down and the probability of the electron's tunnelling in the DQD system would be reduced.…”
Section: The Qsl Time In Pure Dephasing Environmentmentioning
confidence: 99%
“…[39] When the electron transfers from the left quantum dot to the right quantum dot, the tunneling barrier of the detector changes, resulting in the hopping amplitude changing from Ω l,r to Ω ′ l,r . By introducing a QPC, the dynamical evolution of the reduced density matrix of the system is given by [6] d dt…”
Section: Theoretical Frameworkmentioning
confidence: 99%
“…With the rapid development of quantum information technology, solid-state quantum computing based on semiconductor quantum dot system has become a research focus in quantum measurement and quantum information processing. [1][2][3][4][5][6][7][8][9] In the practical quantum computation, the system inevitably interacts with the surrounding environments, which leads to the loss of the coherence of the quantum system. [10][11][12][13][14] Recently, it has become an urgent problem to study the decoherence process caused by the coupling of the quantum system and the external environment, and research on the non-Markovian dynamics of the open quantum system has attracted extensive attention.…”
Section: Introductionmentioning
confidence: 99%