“…These tensors are anti-symmetric in the last two indices so ρ 13 = −ρ 14 . We verify that 0 = A 1 − A 2 ∈ W 9 ∩ J + which establishes Assertion (2). Next, we take ̺ = ( 1 2 , − 1 2 , 1 2 ) to create a tensor such that: A 3 (e 1 , f 1 , e 1 , f 2 ) = A 3 (e 1 , f 1 , f 2 , e 1 ) = 1, A 3 (e 1 , f 1 , f 1 , e 2 ) = A 3 (e 1 , f 1 , e 2 , f 1 ) = A 3 (e 1 , e 2 , f 1 , f 1 ) = −1, A 3 (e 1 , e 2 , e 1 , e 1 ) = A 3 (f 1 , f 2 , e 1 , e 1 ) = A 3 (f 1 , f 2 , f 1 , f 1 ) = −1, ρ 14 (A 3 )(e 1 , e 2 ) = ρ 14 (A 3 )(f 1 , f 2 ) = 1, ρ 14 (A 3 )(e 2 , e 1 ) = ρ 14 (A 3 )(f 2 , f 1 ) = −1.…”