In this paper, the Korteweg–de Vries (KdV) equation is considered, which is a shallow water wave model in fluid mechanic fields. First the existence of solitary wave solutions for the original KdV equation and geometric singular perturbation theory are recalled. Then the existence of solitary wave solutions is established for the equation with two types of delay convolution kernels by using the method of dynamical system, especially the geometric singular perturbation theory, invariant manifold theory and Melnikov method. Finally, the asymptotic behaviors of solitary wave solution are discussed by applying the asymptotic theory. Moreover, an interesting result is found for the equation without backward diffusion effect, there is no solitary wave solution in the case of local delay, but there is a solitary wave solution in the case of nonlocal delay.