To what extent the stentgraft design of iliac branch devices (IBDs) relates to dynamic deformation is currently unknown. Therefore, this study aimed to quantify and compare displacement and geometry changes during the cardiac cycle of two common IBDs. This paper presents a two-center trial with patients treated with a Zenith bifurcated iliac side (ZBIS) or Gore iliac branch endoprosthesis (IBE). All patients underwent a retrospective electrocardiogram (ECG)-gated computed tomographic angiography (CTA) during follow-up. Cardiac-pulsatility-induced displacement was quantified for the following locations: (neo) bifurcation of the aorta, IBD flow divider, distal markers of the internal iliac artery (IIA) component and first IIA bifurcation. Geometrical parameters (length, tortuosity index, curvature and torsion) were quantified over centerlines. Displacement was more pronounced for the IBE than the ZBIS, e.g., craniocaudal displacement of 0.91 mm (0.91–1.13 mm) vs. 0.57 mm (0.40–0.75 mm, p = 0.004), respectively. The IBDs demonstrated similar geometrical parameters in the neo-common iliac artery and distal IIA, except for the larger dynamic curvature and torsion of the distal IIA in IBEs. The IBEs showed more dynamic length and curvature change compared to the ZBIS in the stented IIA. The IIA trajectory showed more pronounced deformation during the cardiac cycle after placement of an IBE than a ZBIS, suggesting the IBE is more conformable than the ZBIS.