2022
DOI: 10.48550/arxiv.2201.08072
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Geometrically adapted Langevin dynamics for Markov chain Monte Carlo simulations

Abstract: Markov Chain Monte Carlo (MCMC) is one of the most powerful methods to sample from a given probability distribution, of which the Metropolis Adjusted Langevin Algorithm (MALA) is a variant wherein the gradient of the distribution is used towards faster convergence. However, being set up in the Euclidean framework, MALA might perform poorly in higher dimensional problems or in those involving anisotropic densities as the underlying non-Euclidean aspects of the geometry of the sample space remain unaccounted for… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 43 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?