2012
DOI: 10.1007/s00220-012-1521-0
|View full text |Cite
|
Sign up to set email alerts
|

Geometry and Dynamics of Planar Linkages

Abstract: In this article we present an approach to describing the geometry and curvature of the configuration spaces of a class of simple idealized planar linkages. This is based on determining the curvature of such configuration spaces canonically embedded into Euclidean space, and then the behaviour of the dynamics of such linkages can be understood via the associated geodesic flow. Our objective is to present a method which, in principle, can be applied to many different examples.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
6
0
2

Year Published

2015
2015
2022
2022

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(9 citation statements)
references
References 17 publications
1
6
0
2
Order By: Relevance
“…This technique may be applied to other linkages. For example, in 2013, Policott and Magalhães [MP13] tried to see what happened with the "double linkage", an equivalent of the triple linkage but with only two articulated arms (also called "pentagon"). But the asymptotic configuration space in that case has both positive and negative curvature and it is impossible to conclude that the geodesic flow is Anosov, although their computer simulation suggests that it should be the case.…”
Section: Mechanical Linkagesmentioning
confidence: 99%
See 1 more Smart Citation
“…This technique may be applied to other linkages. For example, in 2013, Policott and Magalhães [MP13] tried to see what happened with the "double linkage", an equivalent of the triple linkage but with only two articulated arms (also called "pentagon"). But the asymptotic configuration space in that case has both positive and negative curvature and it is impossible to conclude that the geodesic flow is Anosov, although their computer simulation suggests that it should be the case.…”
Section: Mechanical Linkagesmentioning
confidence: 99%
“…It suffices to show that u(1) is positive and bounded away from 0, uniformly with respect to the choice of the geodesic (see for example [DP03] or [MP13]). In the following, we write K(t) := K (q (t)).…”
Section: Proof Of Theoremmentioning
confidence: 99%
“…Альтернативный подход к более строгому обоснованию гиперболичности может быть основан на компьютерной проверке так называемого критерия конусов Алексеева [4,13,43,44]. В работе [30] авторы привлекают этот критерий для обоснования динамики Аносова шарнирных механизмов в случае, когда кривизна не является глобально отрицательной (имеются некоторые области положительной кривизны). Еще один подход заключается в анализе инвариантной меры, которая на гиперболических аттракторах должна соответствовать мере Синая -Рюэля -Боуэна [3,4,13].…”
Section: заключениеunclassified
“…Хант и Маккей [29] установили, что подбором параметров можно добиться, чтобы для тройного шарнирного механизма метрика характеризовалась всюду отрицательной кривизной. В последнее время предложены и проанализированы также некоторые другие шарнирные механизмы, способные демонстрировать динамику Аносова [30,31]. (Кроме того, подобная динамика обсуждается в контексте задачи о движении электронов в двоякопериодическом потенциальном поле двумерной кристаллической решетки [29,32].…”
Section: Introductionunclassified
“…In the triple linkage, as stated by Hunt and MacKay [29], with appropriate selection of sizes and masses one can reach a situation where the metric is of negative curvature over the whole manifold. Recently, some other hinge mechanisms capable of demonstrating the dynamics of Anosov have been proposed and analyzed [30,31]. (Moreover, similar dynamics are discussed in the context of model description of motion of electrons in the doubly periodic potential of two-dimensional crystal lattice [32,29].)…”
Section: Introductionmentioning
confidence: 99%