Growth of helical carbon coils can be achieved by sputtered Inconel® 600 films on silicon (Si) substrates followed by thermal chemical vapor deposition (CVD) using acetylene as a carbon source along with the injection of sulfur hexafluoride (SF6). The coils were used to prepare electronic ink for fabrication of flexible room temperature gas sensors. The ink as a sensing film was deposited onto silver-screen printed plastic substrates using a droplet coating technique. Before dripping the sensing film, the coils were purified using oxidation and acid treatments. The purified coils were then dispersed in different solvents such as deionized water (DI water), ethanol and dimethyl sulfoxide (DMSO) for comparisons. The performance of sensors was investigated for its response to ammonia (NH3) and volatile organic compounds (VOCs) including ethanol, methanol, and dimethylformamide (DMF) in concentration of 1000 ppm at room temperature. Because the baseline resistance of sensor falls within the working range (i.e. kΩ), the coils dispersed in DI water are performed to show the highest selectivity and sensitivity to NH3. The sensing mechanism of helically coiled carbon gas sensors has been also discussed based on the reducing reaction process between NH3 and chemisorbed oxygen on the surface of purified carbon coils.