Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The biwarped product submanifolds generalize the class of product submanifolds and are particular case of multiply warped product submanifolds. The present paper studies the biwarped product submanifolds of the type S T × ψ 1 S ⊥ × ψ 2 S θ in Sasakian space forms S ¯ c , where S T , S ⊥ , and S θ are the invariant, anti-invariant, and pointwise slant submanifolds of S ¯ c . Some characterizing inequalities for the existence of such type of submanifolds are proved; besides these inequalities, we also estimated the norm of the second fundamental form.
The biwarped product submanifolds generalize the class of product submanifolds and are particular case of multiply warped product submanifolds. The present paper studies the biwarped product submanifolds of the type S T × ψ 1 S ⊥ × ψ 2 S θ in Sasakian space forms S ¯ c , where S T , S ⊥ , and S θ are the invariant, anti-invariant, and pointwise slant submanifolds of S ¯ c . Some characterizing inequalities for the existence of such type of submanifolds are proved; besides these inequalities, we also estimated the norm of the second fundamental form.
<abstract><p>In this article, we study totally real submanifolds in Kaehler product manifold with constant scalar curvature using self-adjoint differential operator $ \Box $. Under this setup, we obtain a characterization result. Moreover, we discuss $ \delta- $invariant properties of such submanifolds and get an obstruction result as an application of the inequality derived. The results in the article are supported by non-trivial examples.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.