2001
DOI: 10.1090/s0002-9947-01-02815-x
|View full text |Cite
|
Sign up to set email alerts
|

Geometry of chain complexes and outer automorphisms under derived equivalence

Abstract: Abstract. The two main theorems proved here are as follows: If A is a finite dimensional algebra over an algebraically closed field, the identity component of the algebraic group of outer automorphisms of A is invariant under derived equivalence. This invariance is obtained as a consequence of the following generalization of a result of Voigt. Namely, given an appropriate geometrization Comp A d of the family of finite A-module complexes with fixed sequence d of dimensions and an "almost projective" complex X … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
20
0
2

Year Published

2005
2005
2022
2022

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 58 publications
(22 citation statements)
references
References 22 publications
0
20
0
2
Order By: Relevance
“…We are going to show that derived equivalent symmetric stably biserial algebras have the same number of deformed loops using the identity component Out 0 (A) of the group of outer automorphisms. By [23,33], the group Out 0 (A) is invariant under derived equivalence as an algebraic group, for a finite dimensional algebra A over an 3) π l (β), π l (β ) are parallel for all l. In this case A = kQ/I is a caterpillar. For an arbitrary p i ∈ P, choose a presentation…”
Section: The Group Of Outer Automorphismsmentioning
confidence: 99%
See 1 more Smart Citation
“…We are going to show that derived equivalent symmetric stably biserial algebras have the same number of deformed loops using the identity component Out 0 (A) of the group of outer automorphisms. By [23,33], the group Out 0 (A) is invariant under derived equivalence as an algebraic group, for a finite dimensional algebra A over an 3) π l (β), π l (β ) are parallel for all l. In this case A = kQ/I is a caterpillar. For an arbitrary p i ∈ P, choose a presentation…”
Section: The Group Of Outer Automorphismsmentioning
confidence: 99%
“…The main technique, used in this paper, is the computation of the rank of the maximal torus T (A) of the identity component Out 0 (A) of the group of outer automorphisms for a symmetric stably biserial algebra A. The group Out 0 (A) is a derived invariant [23,33] used quite seldom. The only previous systematic application we know of is the proof of the fact that the number of arrows in the quiver of a gentle algebra is a derived invariant [1].…”
Section: Introductionmentioning
confidence: 99%
“… (1)The Hochschild ( co‐ ) homology and cyclic homology. In particular, the centers of rings ( see ) . (2)The number of non‐isomorphic simple modules if we are restricted to Artin algebras. (3)Finiteness of global ( or finitistic ) dimensions ( see ) . (4)The Cartan determinants, and the characteristic polynomials of Coxeter matrices if the Cartan matrices of Artin algebras are invertible ( see [, Lemma 4.1]; for a detailed proof, see [, Proposition 6.8.9] ) . (5)Algebraic K‐groups and G‐theory ( see ) . (6)Symmetry of algebras over an arbitrary field ( respectively, self‐injectivity of algebras over an algebraically closed field ) ( see ) . (7)Finite‐dimensional gentle algebras over a field ( see ) . (8)The identity component of the algebraic group of outer automorphisms of finite‐dimensional algebras ( see ) . …”
Section: Derived Categories and Derived Equivalences Of Algebrasmentioning
confidence: 99%
“…Le résultat suivant aété obtenu indépendemment, et par des méthodes différentes, par Huisgen-Zimmermann et Saorìn [11]. Ce résultat avaitétéétabli pour deséquivalences dérivées particulières auparavant [9].…”
Section: Lemme 45 Les Isomorphismes ψ L Et ψ L Induisent Des Isomorunclassified
“…Nous déduisons de cette description de Out que la composante connexe Out 0 de l'identité est invariante paréquivalence de Morita (théorème 4.2), résultat dûà Brauer [16]. De manière similaire, on déduit l'invariance de Out 0 paréquivalence dérivée (théorème 4.6), résultat obtenu indépendamment, et par des méthodes différentes, par Huisgen-Zimmermann et Saorín [11]. Nous donnons aussi une version de ce résultat pour les géomètres : pour une variété projective lisse, le produit Pic 0 × Aut 0 est invariant paŕ equivalence de catégories dérivées (théorème 4.18).…”
unclassified