A complete landslide dam hazard management incorporates two assessment phases: the damming probability and the breach hazard. A prompt evaluation of the dam stability is crucial during the emergency to mitigate its consequences, but a reliable risk assessment can be realized only after the event has occurred, when the available time is very short. Therefore, it is necessary to develop tools able to help in mapping the spatial probability of damming over large areas for land-use planning, in order to better constrain consequence analysis and risk scenarios for setting up mitigation measures. In this work, a semi-automated GIS-based mapping methodology, based on a statistical correlation of morphometric parameters described by a morphological index, is proposed to spatially assess the likelihood of a river obstruction by landslide damming through two main mechanisms: the reactivation of existing landslides and the formation of new landslides. The two mapping methods (damming predisposition and damming probability) were used on a test area, the Arno River basin in Italy. The Eastern part of the basin resulted as the most susceptible to damming events in the whole basin. These are the highest mountain ridges in the basin (about 1600 m a.s.l.), characterized by calcareous, arenaceous, and marl lithology. The results are confirmed by the high concentration of the known historical landslide dams in the area according to existing inventories.