Background: This paper reviews the classical and some particular factors contributing to earthquake-triggered landslide activity. This analysis should help predict more accurately landslide event sizes, both in terms of potential numbers and affected area. It also highlights that some occurrences, especially those very far from the hypocentre/activated fault, cannot be predicted by state-of-the-art methods. Particular attention will be paid to the effects of deep focal earthquakes in Central Asia and to other extremely distant landslide activations in other regions of the world (e.g. Saguenay earthquake 1988, Canada). Results: The classification of seismically induced landslides and the related 'event sizes' is based on five main factors: 'Intensity', 'Fault factor', 'Topographic energy', 'Climatic background conditions', 'Lithological factor'. Most of these data were extracted from papers, but topographic inputs were checked by analyzing the affected region in Google Earth. The combination and relative weight of the factors was tested through comparison with well documented events and complemented by our studies of earthquake-triggered landslides in Central Asia. The highest relative weight (6) was attributed to the 'Fault factor'; the other factors all received a smaller relative weight (2-4). The high weight of the 'Fault factor' (based on the location in/outside the mountain range, the fault type and length) is strongly constrained by the importance of the Wenchuan earthquake that, for example, triggered far more landslides in 2008 than the Nepal earthquake in 2015: the main difference is that the fault activated by the Wenchuan earthquake created an extensive surface rupture within the Longmenshan Range marked by a very high topographic energy while the one activated by the Nepal earthquake ruptured the surface in the frontal part of the Himalayas where the slopes are less steep and high. Finally, the calibrated factor combination was applied to almost 100 other earthquake events for which some landslide information was available. This comparison revealed the ability of the classification to provide a reasonable estimate of the number of triggered landslides and of the size of the affected area. According to this prediction, the most severe earthquake-triggered landslide event of the last one hundred years would actually be the Wenchuan earthquake in 2008 followed by the 1950 Assam earthquake in India -considering that the dominating role of the Wenchuan earthquake data (including the availability of a complete landslide inventory) for the weighting of the factors strongly influences and may even bias this result. The strongest landslide impacts on human life in recent history were caused by the HaiyuanGansu earthquake in 1920 -ranked as third most severe event according to our classification: its size is due to a combination of high shaking intensity, an important 'Fault factor' and the extreme susceptibility of the regional loess cover to slope failure, while the surface morphology of the affected...