Glacial kettles are surficial depressions that form in formerly glaciated terrain when buried stagnant ice melts within pro‐glacial sediments, often deposited by meltwater streams. Kettles, like other glacial landforms, provide insight into the impact of climate on landscape evolution, such as the extent and timing of glaciations. The geometry of kettle features is variable, but existing theory does not explain the range of observed morphologies. Our study aims to establish a quantitative relationship between the depth of ice burial and the resulting morphology of terrain collapse in kettle depressions. To do so, we simulated kettle formation in the laboratory by burying ice spheres of four sizes in well‐sorted coarse sand at four different depths. As the spheres melt at room temperature, a glacial kettle analog forms at the surface. We scanned the resulting kettle topography with a portable LiDAR scanner to produce 3D digital elevation models of each depression, from which we measured each depression's depth and width and, in one instance, the time series of kettle formation. Using this data, we quantified the relationship between the sphere diameter, burial depth and resulting dimensions of the kettle by developing a set of equations, which we then applied to full‐scale features. Our results indicate that ice burial deeper than one sphere diameter corresponds to a decrease in depression depth and an increase in depression width. This application offers insight into the interdependence of ice burial depth and kettle geometry.