In the present study, poly (ethylene terephthalate)-based composites were produced and characterized. These composites were composed by poly (ethylene terephthalate) (PET) reinforced with geopolymer concrete waste (GCW). Both untreated (U-GCW) and treated with oleic acid (OA) geopolymer concrete waste (T-GCW) were used in the production of the composites. The PET/GCW ratios used for either treated or untreated GCW bodies were 80/20 (wt%), 60/40 (wt%) and 50/50 (wt%). Chemical compositions were assessed by X-ray fluorescence spectroscopy (XRF), crystallinity by differential scanning calorimetry (DSC), thermal stability by thermogravimetry (TGA), microstructure by field emission gun scanning electron microscopy (FEG-SEM) with energy dispersive X-ray spectroscopy (EDS), and mechanical properties were assessed by compression tests. Fourier transform infrared spectroscopy (FT-IR) was used to check the efficiency of the treatment with OA, as well as the interaction between PET and GCW. The T-GCW PET composites showed better thermal, physical, and mechanical properties, for non-structural applications, when compared to U-GCW.