Motivation
Sequence alignment is a memory bound computation whose performance in modern systems is limited by the memory bandwidth bottleneck. Processing-in-memory architectures alleviate this bottleneck by providing the memory with computing competencies. We propose Alignment-in-Memory (AIM), a framework for high-throughput sequence alignment using processing-in-memory, and evaluate it on UPMEM, the first publicly-available general-purpose programmable processing-in-memory system.
Results
Our evaluation shows that a real processing-in-memory system can substantially outperform server-grade multi-threaded CPU systems running at full-scale when performing sequence alignment for a variety of algorithms, read lengths, and edit distance thresholds. We hope that our findings inspire more work on creating and accelerating bioinformatics algorithms for such real processing-in-memory systems.
Availability
Our code is available at https://github.com/safaad/aim.