Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Reliable and detailed data on the prevalence of tuberculosis (TB) with sub-national estimates are scarce in Ethiopia. We address this knowledge gap by spatially predicting the national, sub-national and local prevalence of TB, and identifying drivers of TB prevalence across the country. Methods TB prevalence data were obtained from the Ethiopia national TB prevalence survey and from a comprehensive review of published reports. Geospatial covariates were obtained from publicly available sources. A random effects meta-analysis was used to estimate a pooled prevalence of TB at the national level, and model-based geostatistics were used to estimate the spatial variation of TB prevalence at sub-national and local levels. Within the MBG Plugin Framework, a logistic regression model was fitted to TB prevalence data using both fixed covariate effects and spatial random effects to identify drivers of TB and to predict the prevalence of TB. Results The overall pooled prevalence of TB in Ethiopia was 0.19% [95% confidence intervals (CI): 0.12%–0.28%]. There was a high degree of heterogeneity in the prevalence of TB (I2 96.4%, P <0.001), which varied by geographical locations, data collection periods and diagnostic methods. The highest prevalence of TB was observed in Dire Dawa (0.96%), Gambela (0.88%), Somali (0.42%), Addis Ababa (0.28%) and Afar (0.24%) regions. Nationally, there was a decline in TB prevalence from 0.18% in 2001 to 0.04% in 2009. However, prevalence increased back to 0.29% in 2014. Substantial spatial variation of TB prevalence was observed at a regional level, with a higher prevalence observed in the border regions, and at a local level within regions. The spatial distribution of TB prevalence was positively associated with population density. Conclusion The results of this study showed that TB prevalence varied substantially at sub-national and local levels in Ethiopia. Spatial patterns were associated with population density. These results suggest that targeted interventions in high-risk areas may reduce the burden of TB in Ethiopia and additional data collection would be required to make further inferences on TB prevalence in areas that lack data.
Background Reliable and detailed data on the prevalence of tuberculosis (TB) with sub-national estimates are scarce in Ethiopia. We address this knowledge gap by spatially predicting the national, sub-national and local prevalence of TB, and identifying drivers of TB prevalence across the country. Methods TB prevalence data were obtained from the Ethiopia national TB prevalence survey and from a comprehensive review of published reports. Geospatial covariates were obtained from publicly available sources. A random effects meta-analysis was used to estimate a pooled prevalence of TB at the national level, and model-based geostatistics were used to estimate the spatial variation of TB prevalence at sub-national and local levels. Within the MBG Plugin Framework, a logistic regression model was fitted to TB prevalence data using both fixed covariate effects and spatial random effects to identify drivers of TB and to predict the prevalence of TB. Results The overall pooled prevalence of TB in Ethiopia was 0.19% [95% confidence intervals (CI): 0.12%–0.28%]. There was a high degree of heterogeneity in the prevalence of TB (I2 96.4%, P <0.001), which varied by geographical locations, data collection periods and diagnostic methods. The highest prevalence of TB was observed in Dire Dawa (0.96%), Gambela (0.88%), Somali (0.42%), Addis Ababa (0.28%) and Afar (0.24%) regions. Nationally, there was a decline in TB prevalence from 0.18% in 2001 to 0.04% in 2009. However, prevalence increased back to 0.29% in 2014. Substantial spatial variation of TB prevalence was observed at a regional level, with a higher prevalence observed in the border regions, and at a local level within regions. The spatial distribution of TB prevalence was positively associated with population density. Conclusion The results of this study showed that TB prevalence varied substantially at sub-national and local levels in Ethiopia. Spatial patterns were associated with population density. These results suggest that targeted interventions in high-risk areas may reduce the burden of TB in Ethiopia and additional data collection would be required to make further inferences on TB prevalence in areas that lack data.
As extreme weather events increase in frequency and intensity, the health system faces significant challenges, not only from shifting patterns of climate-sensitive diseases but also from disruptions to healthcare infrastructure, supply chains and the physical systems essential for delivering care. This necessitates the strategic use of geospatial tools to guide the delivery of healthcare services and make evidence-informed priorities, especially in contexts with scarce human and financial resources. In this article, we highlight several published papers that have been used throughout the phases of the disaster management cycle in relation to health service delivery. We complement the findings from these publications with a rapid scoping review to present the body of knowledge for using spatial methods for health service delivery in the context of disasters. The main aim of this article is to demonstrate the benefits and discuss the challenges associated with the use of geospatial methods throughout the disaster management cycle. Our scoping review identified 48 articles employing geospatial techniques in the disaster management cycle. Most of them focused on geospatial tools employed for preparedness, anticipatory action and mitigation, particularly for targeted health service delivery. We note that while geospatial data analytics are effectively deployed throughout the different phases of disaster management, important challenges remain, such as ensuring timely availability of geospatial data during disasters, developing standardized and structured data formats, securing pre-disaster data for disaster preparedness, addressing gaps in health incidence data, reducing underreporting of cases and overcoming limitations in spatial and temporal coverage and granularity. Overall, existing and novel geospatial methods can bridge specific evidence gaps in all phases of the disaster management cycle. Improvement and ‘operationalization’ of these methods can provide opportunities for more evidence-informed decision making in responding to health crises during climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.