2019
DOI: 10.1051/matecconf/201926602007
|View full text |Cite
|
Sign up to set email alerts
|

Geospatial-Based Model for Diagnosing Potential High-Risk Areas of Tuberculosis Disease in Malaysia

Abstract: Malaysia has a medium burden of tuberculosis (TB) incidence based on World Health Organization (WHO) indicator, but the current trend of TB cases is generally alarming. The Ministry of Health (MOH), Malaysia has set up several guidelines to control the disease, however, the national TB technical report in 2015 addressed that existing detection methods of TB on the site still need to be integrated with relevant alternatives. A geospatial based model is proposed to identify potential high-risk areas of TB especi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 17 publications
0
4
0
1
Order By: Relevance
“…Kepadatan penduduk tidak bisa dianggap sebagai penyebab tunggal terjadinya kasus TB paru BTA positif, sehingga ada kemungkinan faktor-faktor lain seperti iklim, ketinggian wilayah, pendidikan dan usia yang ikut andil dalam peningkatan kasus TB paru BTA positif di Indonesia, maka perlu dikembangkan alat deteksi TB yang layak serta model penyebab penyakit yang cermat sebelum suatu penyakit muncul (Puspita at.al 2021). Menggabungkan model berbasis geospasial dengan pendekatan berbasis epidemi untuk mendeteksi TB pada tubuh manusia dan menyelidiki faktor lingkungan diperlukan untuk deteksi holistik atau rencana pencegahan penyebaran TB (Rauf et al 2019). Penelitian (Yeffi Masnarian, Arinil Haq 2020) bahwa kepadatan penduduk merupakan salah variabel yang secara signifikan membedakan antara keempat kluster yang mempengaruhi kejadian TB paru.…”
Section: Tinjauan Pustakaunclassified
“…Kepadatan penduduk tidak bisa dianggap sebagai penyebab tunggal terjadinya kasus TB paru BTA positif, sehingga ada kemungkinan faktor-faktor lain seperti iklim, ketinggian wilayah, pendidikan dan usia yang ikut andil dalam peningkatan kasus TB paru BTA positif di Indonesia, maka perlu dikembangkan alat deteksi TB yang layak serta model penyebab penyakit yang cermat sebelum suatu penyakit muncul (Puspita at.al 2021). Menggabungkan model berbasis geospasial dengan pendekatan berbasis epidemi untuk mendeteksi TB pada tubuh manusia dan menyelidiki faktor lingkungan diperlukan untuk deteksi holistik atau rencana pencegahan penyebaran TB (Rauf et al 2019). Penelitian (Yeffi Masnarian, Arinil Haq 2020) bahwa kepadatan penduduk merupakan salah variabel yang secara signifikan membedakan antara keempat kluster yang mempengaruhi kejadian TB paru.…”
Section: Tinjauan Pustakaunclassified
“…urbanization, population, type of housing, built-up area and health care centre, are selected for this study. Local researchers have also used similar factors and models to define the risk areas of TB in Shah Alam (Abdul Rasam et al, 2019;Abdul Rasam et al, 2016). The model is built in three main stages: frame development, data processing Abdul Rasam et al, 2016, and risk analysis and modelling.…”
Section: The Determination Of the Local Tb Risk Factorsmentioning
confidence: 99%
“…Integrating the GIS and Multi-Criteria Decision Making (MCDM) process can enhance the technology's technical capabilities. Integrating GIS capabilities with the MCDM methodology offers more fantastic performance and decision-making capacity when solving spatial final decision problems (Abdul Rasam et al, 2020;Abdul Rasam et al, 2019;Maris et al, 2008;Rajab et al, 2020). In general, input map layers are prepared, and two different MCDM methods are introduced into GIS: Weighted Linear Combination (WLC) and Analytical Hierarchy Process (AHP).…”
Section: Introductionmentioning
confidence: 99%
“…Meanwhile, Li [16] used the Bayesian spatiotemporal model to analyze the correlation of socio-economic, health, demographic, and meteorological factors with the population level of TB. Other studies have utilized a weight-rating and multi-criteria decision-making score model to map TB risk areas [17].…”
Section: Introductionmentioning
confidence: 99%