Ever increase in population growth and drastic climatic changes augment the demand and exploration of groundwater from time to time. An integrated approach of remote sensing (RS), geographic information system (GIS) and multicriteria decision analysis (MCDA) of analytical hierarchical process (AHP) were applied to delineate groundwater potential (GWP) zones in Andasa-Tul watershed, Upper Blue Nile Basin, Ethiopia. For this purpose, nine GWP influencing thematic layers comprising lithology, lineament density, geomorphology, slope, soil, drainage density, land use/land cover, rainfall and depth to groundwater level were used. The thematic layers and classes within them were given scale values based on literature and experts' decision and calculated using Satty's AHP. The thematic layers have been integrated via their weights/rates using weighted overlay spatial function tool of ArcGIS to provide GWP map. The result shows that GWP map comprises very good (13.4%), good (7%), moderate (23.6 %), poor (35.4%) and very poor (20.5%) zones. Validation of the GWP map with existing water point yields shows 84.21 % agreement indicating good accuracy of the method. The map removal sensitivity analysis result reveals that GWP is more sensitive to lithology (mean variation index, 1.92 %) and less sensitive to geomorphology (mean variation index, 0.59 %). Similarly, from the single layer sensitivity analysis, lithology and slope are found to be more effective parameters, whereas rainfall and depth to groundwater level are less effective variables.