Satellite remote sensing is a critical tool for continental and synoptic monitoring and mapping of savannah wildfires. Satellite active fire products, which report on the time and location of a fire and may further characterise fire by estimating fire radiative power (FRP), provide valuable utility for savannah fire management and carbon accounting. These applications require that satellite measurements are of high accuracy, which can only be determined through validation. However, acquiring reference data for validation that is a representative of the fire conditions at the time of satellite image capture is challenging, due to rapid changes in fire behaviour and the inherent safety considerations of collecting field data during fire events. This review explores traditional and contemporary methods used to assess the accuracy and consistency of fire detections and FRP derived from satellite data in savannah ecosystems, with a focus on the approaches and challenges in collecting suitable reference data for a phenomenon as dynamic, ephemeral, and hazardous as wildfire. From this synthesis, we present generalised frameworks for the validation and intercomparison of satellite active fire products within savannah ecosystems.