As a basic infrastructure, sewers play an important role in the innards of every city and town to remove unsanitary water from all kinds of livable and functional spaces. Sewer pipe failures (SPFs) are unwanted and unsafe in many ways, as the disturbance that they cause is undeniable. Unlike water distribution systems, sewer pipe networks meet manholes more often as water movement is due to gravity and manholes are needed in every intersection as well as through pipe length. Many studies have been focused on sewer pipe failures and so on, but few investigations have been done to show the effect of manhole proximity on pipe failure. Predicting and localizing the sewer pipe failures are affected by different parameters of sewer pipe properties, such as material, age, slope, and depth of the sewer pipes. This study investigates the applicability of a support vector machine (SVM), a supervised machine learning (ML) algorithm, for the development of a prediction model to predict sewer pipe failures and the effects of manhole proximity. The results show that SVM with an accuracy of 84% can properly approximate the manhole effects on sewer pipe failures.