Expansive soils are problematic by exhibitingl shrink-swell behaviors and high plasticity under different moisture conditions, which is communal in salient areas of Ethiopia. This article aims to conduct a contemplated investigation and statistical analysis-based prediction for swelling potentials of soils using the index properties. This is used to define the properties of soils by investigation and to minimize the rigorous futuristic investigation by providing the prediction model of soils of the Holte town. Hence, thirty soil samples were collected from fifteen test pits with a depth of 1.5 m to 3.0 m from various locations. Investigations were conducted in the field and laboratory. Results revealed that the in situ moisture content, dry density, and bulk unit weight ranges were found, 31.21–40.93%, 1.20–1.30 g/cm3, and 1.60–1.73 g/cm3, respectively. The soil grain results presented that the study area is dominantly fine-grained soil properties (i.e., silt and clay). Liquid limit, plastic limit, plasticity index, and liquidity index ranged from 58 to 77%, 26–33%, 28–45%, and 0.00–0.35%, respectively, which assured that the soils in this town have 87% high plastic clay (CH). In addition, the swelling potential, swelling pressure, free swell, and activity investigations revealed that the soils in this town are highly plastic with a high degree of expansiveness. This was found that the swelling potential is the main measuring property of expansive soils, which was predicted by the statistical tool SPSS using numerous index properties. After conducting numerous statistical models, the best swelling potential was found Sp = 6.876γd + 0.178PI − 10.664, which is maintained by 90% of the points found within the regression line having a mean confidence level of 99.99%. In conclusion, the obtained model was validated and was found as an optimal measuring tool of expansiveness through the swelling potential of soils specifically in Holte town.