In the practice of geotechnical engineering applied to mining, dry stacked tailings heap projects are analysed by limit equilibrium methods and stress-strain analyses. These methods and model assumptions do not consider the influence of the partially drained conditions, strain softening, and transition from over-consolidated to normally consolidated behaviour of the foundation. This situation can lead to calculations of deterministic safety factors that are often overestimated, according to the nature of the foundation. This article proposes a methodology for numerical modelling of the foundation during staged construction of a heap, and considers loading time as a critical variable in calculating the Factor of Safety of the heap dry stacked of elaborating a numerical model considering the foundation and construction.The physical and geotechnical properties of the materials were derived through the model, and are the interpretation of data obtained from a geotechnical investigation and laboratory testing campaign. Stress-strain analyses are performed for different stacking speed scenarios to assess its influence on the safety factor at each loading stage. The analyses are coupled, where the distribution of stresses and deformations within the foundation and the dissipation of porewater pressures over time are simulated. The results show the evolution of the Factor of Safety, the spatial distribution of the regions with excess porewater pressure, allowing the optimisation of both the rate of rise of the dry stack and external batter slope for the project to minimise ground improvement.It is observed that there is a strong dependence of the coefficient of permeability of the foundation soils on the porewater pressure dissipation time. Numerical modelling considering partially drained conditions allows greater understanding of foundation behaviour and performance during the development of the dry stacked heap. The analysis is considered applicable to both soft soil foundation conditions and conversion of existing wet disposal tailings facilities to dry stacking atop, referred to as 'piggybacking' within the mining industry.