Primordial germ cells (PGCs) have been used in avian genetic resource conservation and transgenic animal production. Despite their potential applications to numerous avian taxa facing extinction due to habitat loss and degradation, research has largely focused on poultry, such as chickens, in part owing to the difficulty in obtaining intact PGCs from other species. Recently, phenotypic differences between PGCs of chicken and zebra finch, a wild bird with vocal learning, in early embryonic development have been reported. In this study, we used advanced single‐cell RNA sequencing (scRNA‐seq) technology to evaluate zebra finch and chicken PGCs and surrounding cells, and to identify species‐specific characteristics. We constructed single‐cell transcriptome landscapes of chicken gonadal PGCs for a comparison with previously reported scRNA‐seq data for zebra finch. We identified interspecific differences in several signaling pathways in gonadal PGCs and somatic cells. In particular, NODAL and insulin signaling pathway activity levels were higher in zebra finch than in chickens, whereas activity levels of the downstream FGF signaling pathway, involved in the proliferation of chicken PGCs, were higher in chickens. This study is the first cross‐species single‐cell transcriptomic analysis targeting birds, revealing differences in germ cell development between phylogenetically distant Galliformes and Passeriformes. Our results provide a basis for understanding the reproductive physiology of avian germ cells and for utilizing PGCs in the restoration of endangered birds and the production of transgenic birds.