Germination and emergence of halophytes may decrease significantly by seed burial in dead plant material, or wrack, which is common and abundant in tidal marshes. The effects of plant debris (wrack) burial on seed germination and seedling establishment of Spartina densiflora, an invasive cordgrass, were studied under greenhouse conditions and compared with field observations. Five wrack burial depths were applied: control without wrack, 1 cm (1235 ± 92 g DW wrack m -2 ), 2 cm (3266 ± 13 g DW m -2 ), 4 cm (4213 ± 277 g DW m -2 ), and 8 cm (6138 ± 227 g DW m -2 ). Sediment pH, electrical conductivity, redox potential and temperature were recorded. Quiescence increased with wrack load up to ~20% at 8 cm deep. Germination decreased with wrack load from 96% to 14%, which could be related with anoxic conditions under the debris since sediment redox potential was as low as -83 ± 7 mV at 8 cm. Germination percentage increased and quiescent and dormant percentages decreased at higher daily sediment temperatures and with higher daily temperature fluctuations, conditions that were recorded without or under low loads of wrack. Spartina densiflora did not show primary dormancy, but its seeds entered into a non-deep physiological dormancy below 1 cm deep in plant debris. The establishment of S. densiflora seedlings was also greatly reduced by wrack burial since only 6 seedlings (11 ± 5 % of germinated seeds) emerged above plant debris from 1 cm and all seedlings died from deeper than 1 cm. S. densiflora seedling development was also reduced by wrack burial. The inverse relationship between germination and emergence of S. densiflora with wrack burial recorded in our study is useful to predict its invasion dynamics and to plan the management of invaded marshes.
NeoBiotaAhmed Abbas et al. / NeoBiota 21: 65-79 (2014) 66