2019
DOI: 10.1007/978-3-030-35699-6_22
|View full text |Cite
|
Sign up to set email alerts
|

Gesture Recognition in RGB Videos Using Human Body Keypoints and Dynamic Time Warping

Abstract: Gesture recognition opens up new ways for humans to intuitively interact with machines. Especially for service robots, gestures can be a valuable addition to the means of communication to, for example, draw the robot's attention to someone or something. Extracting a gesture from video data and classifying it is a challenging task and a variety of approaches have been proposed throughout the years. This paper presents a method for gesture recognition in RGB videos using OpenPose to extract the pose of a person … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
1
4

Year Published

2019
2019
2024
2024

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 20 publications
(19 citation statements)
references
References 28 publications
0
11
1
4
Order By: Relevance
“…To classify human activities, the aforementioned authors developed an LSTM-RNN model by combining the long short-term memory (LSTM) model with the recurrent neural network (RNN) model. Schneider et al [ 24 ] presented a method for recognizing human gestures. In this method, the OpenPose framework is used to detect human poses, and the one-nearest-neighbor classifier is used to classify the detected poses.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…To classify human activities, the aforementioned authors developed an LSTM-RNN model by combining the long short-term memory (LSTM) model with the recurrent neural network (RNN) model. Schneider et al [ 24 ] presented a method for recognizing human gestures. In this method, the OpenPose framework is used to detect human poses, and the one-nearest-neighbor classifier is used to classify the detected poses.…”
Section: Related Workmentioning
confidence: 99%
“…Many difficulties arise in the broad implementation of the aforementioned method due to the replacement of the input camera in the classroom. To resolve this issue, the OpenPose framework [ 21 ] is used to estimate two-dimensional (2D) human poses [ 22 , 23 , 24 ]. However, the limitation of this approach is that incorrect connections occur in pose estimation in highly crowded areas such as classrooms.…”
Section: Introductionmentioning
confidence: 99%
“…Para tanto, podem ser usados modelos de aprendizado de máquina, como Hidden Markov Model (HMM) 10 , Recurrent Neural Network (RNN) 11 , Convolutional Neural Network (CNN) 12 , entre outros; ou algoritmos de alinhamento temporal, como o algoritmo DTW [Berndt and Clifford 1994], distância Euclidiana (ED) 13 ou suas variantes. Nesta tese foram usados o algoritmo DTW em conjunto com o algoritmo k-nearest neighbors (kNN) para a classificação da série temporal, como nos trabalhos de [Schneider et al 2019, Ribó et al 2016, Chandrasekhar and Mhala 2018, Chen et al 2020.…”
Section: Treinamentounclassified
“…Posteriormente, realizamos duas etapas de processamento para permitir a invariância do tamanho de cada pessoa e reduzir a dimensionalidade dos dados. Primeiro, para permitir a invariância do tamanho e posição do paciente, normalizamos as coordenadas do ponto como apresentado nos trabalhos de [Celebi et al 2013] e [Schneider et al 2019]. Aqui, reposicionamos o ponto-chave do pescoço na origem e transladamos todos os pontos circundantes em correspondência.…”
Section: Processamento De Vídeo E Extração De Pontos-chave Do Corpounclassified
See 1 more Smart Citation