2019
DOI: 10.1103/physrevmaterials.3.044406
|View full text |Cite
|
Sign up to set email alerts
|

Giant barocaloric effect in all- d -metal Heusler shape memory alloys

Abstract: We have studied the barocaloric properties associated with the martensitic transition of a shape memory Heulser alloy Ni50Mn31.5Ti18.5 which is composed of all-d-metal elements. The composition of the sample has been tailored to avoid long range ferromagnetic order in both ausenite and martensite. The lack of ferromagnetism results in a weak magnetic contribution to the total entropy change thereby leading to a large transition entropy change. The combination of such a large entropy change and a relatively lar… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

1
40
0
5

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 76 publications
(46 citation statements)
references
References 38 publications
1
40
0
5
Order By: Relevance
“…2A and Fig. 2B for CnH2n+2 (n=14, 16 and 18) along with those reported for existing BC materials 10,[13][14][15][16][17]20,21,[29][30][31][32][33][34][35][36][37][38][39] . Here, the isothermal entropy change in references is mainly obtained by indirect method or quasi-direct method 6 .…”
supporting
confidence: 76%
“…2A and Fig. 2B for CnH2n+2 (n=14, 16 and 18) along with those reported for existing BC materials 10,[13][14][15][16][17]20,21,[29][30][31][32][33][34][35][36][37][38][39] . Here, the isothermal entropy change in references is mainly obtained by indirect method or quasi-direct method 6 .…”
supporting
confidence: 76%
“…(b)Reversible adiabatic temperature changes upon 0 → ~1 kbar pressure increase as a function of temperature. Literature data taken from: PG:[12]; C60:[13];[TPrA][Mn(dca)3]:[44]; [(CH3)4N]Mn[N3]3:[45]; MnCoGeB0.03 (asterisk):[46]; (MiNiSi)0.60(FeCoGe)0.40 (diamond) and (MiNiSi)0.61(FeCoGe)0.39 (triangle):[47]; Ni50Mn31.5Ti18.5 (circle):[48].…”
mentioning
confidence: 99%
“…合适成 分的该系列合金马氏体相变既属于热弹性相变, 又属 于铁磁性相变, 因此既可以被温度或应力诱导, 也可 以被磁场驱动. 在温度、磁场等外界因素的激励下, 合金可以发生铁磁奥氏体和弱磁马氏体之间的马氏体 相变(或逆马氏体相变), 晶体结构转变和磁性相变强 烈耦合, 因此, 相变附近表现出很大的磁热效应 [2][3][4] , 同 时 也 具 有 很 大 的 机 械 热 效 应 ( 弹 热 、 压 热 ) 、 巨 磁 电阻、磁致应变、交换偏置、动力学囚禁等物理效 应 [2][3][4][10][11][12][13][14][15][16][17][18][19][20][21][22][23] , 从而在固态制冷、磁激励、人工智能等前 沿和新兴领域都极具应用前景.…”
Section: 在众多一级磁相变材料中 Ni-mn基heusler合金unclassified
“…人们在对Ni-Mn基FSMAs研究的过程中, 通过多 种途径调控实现铁磁/弱磁性马氏体相变, 比如过渡/ 主族元素取代 [2][3][4][8][9][10]14,15,[18][19][20][21][22][23] 、热处理 [11] 、改变快淬 速度 [13] 、间隙位原子掺杂 [16,17] 等. 人们也提出各种机 制解释马氏体相变调控的物理机理, 比如应力弛 豫 [11] 、反位缺陷 [11] 、Mn-Mn间距 [2] 、价电子浓度 [8] 、 第二相析出 [11,13] 等.…”
Section: 在众多一级磁相变材料中 Ni-mn基heusler合金unclassified
See 1 more Smart Citation