Spin-orbit torque (SOT) provides an ultrafast and energy-efficient means to switch magnetization, which is of fundamental and technical importance for spintronic devices. [1][2][3][4][5] A typical SOT device consists of heavy metal/ferromagnet (HM/FM) bilayer, where the HM (e.g., Pt, W, Ta, etc.) converts charge current into spin current mainly due to the spin Hall effect (SHE) and then exerts a torque on the adjacent FM enabling magnetization manipulation. To improve the energy efficiency of SOT-driven magnetization switching, considerable efforts have been made to enhance the charge-spin conversion efficiency of HM [6][7][8][9] and reduce the shunting current in the FM. [10,11] Engineering the bilayer structure [9,12] or replacing HM by novel materials with larger charge-spin conversion efficiency and higher conductivity [10,13,14] are possible avenues to realize higher SOT efficiency.
Manipulation of magnetization by electric-current-induced spin-orbit torque (SOT) is of great importance for spintronic applications because of its merits in energy-efficient and high-speed operation. An ideal material for SOT applications should possess high charge-spin conversion efficiency and high electrical conductivity. Recently, transition metal dichalcogenides (TMDs) emerge as intriguing platforms for SOT study because of their controllability in spin-orbit coupling, conductivity, and energy band topology. Although TMDs show great potentials in SOT applications, the present study is restricted to the mechanically exfoliated samples with small sizes and relatively low conductivities.Here, a manufacturable recipe is developed to fabricate large-area thin films of PtTe 2 , a type-II Dirac semimetal, to study their capability of generating SOT. Large SOT efficiency together with high conductivity results in a giant spin Hall conductivity of PtTe 2 thin films, which is the largest value among the presently reported TMDs. It is further demonstrated that the SOT from PtTe 2 layer can switch a perpendicularly magnetized CoTb layer efficiently. This work paves the way for employing PtTe 2 -like TMDs for wafer-scale spintronic device applications.