This work presents a systematic study of the effects of current pulsation on soft magnetic properties and giant magnetoimpedance (GMI) of nickel-iron (NiFe) coatings electrodeposited on copper wires. The specimens were prepared by the electrodeposition technique with controlled bath compositions and varied applied current waveforms. The microstructural and chemical investigations indicate that current pulsation with 50% duty cycle and 50 Hz frequency provides significantly smoother coating surface of uniform nodules, with comparable Fe content but different phase composition, as compared to the direct current condition. The vibrating sample magnetometer evidently shows that the deposits prepared with a pulsed current exhibit relatively small coercivity, below 4 Oe. Using the four-point probe technique, the MI ratio of the pulse deposits is found to reach a significantly high value above 2,000% with decent sensitivity. The benefits of current pulsation in improving the characteristics of NiFe deposits, and correspondingly the alloys’ soft magnetic properties and MI effects are demonstrated.