The role of theory level in prediction of benzene magnetic indexes of aromaticity is analysed and compared with calculated nuclear magnetic shieldings of He used as NMR probe. Three closely related nucleus-independent chemical shift (NICS) based indexes were calculated for benzene at SCF-HF, MP2, and DFT levels of theory and the impact of basis set on these quantities was studied. The changes of benzene NICS(0), NICS(1), and NICS(1)zz parameters calculated using SCF-HF, MP2 and several density functionals were within 1 to 3 ppm. Similar deviations between magnetic indexes of aromaticity were observed for values calculated with selected basis sets. Only very small effect of polar solvent on benzene aromaticity was predicted. The He nuclear magnetic isotropic shielding (σ) and its zz-components (σ ) of helium atom approaching the centre of benzene ring from above produced similar curves versus benzene-He distance to NICS parameters calculated for similarly moving Bq ghost atom. We also propose an experimental verification of NICS calculations by designing the He NMR measurement for benzene saturated with helium gas or in low temperature matrices.