2019
DOI: 10.1007/s11629-018-5337-z
|View full text |Cite
|
Sign up to set email alerts
|

GIS-based landslide susceptibility mapping using hybrid integration approaches of fractal dimension with index of entropy and support vector machine

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

1
28
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 62 publications
(29 citation statements)
references
References 63 publications
1
28
0
Order By: Relevance
“…A landslide is one of the most familiar and disastrous geological hazards with great destructiveness, which always poses a serious threat to human life, property, and living environment, and restricts human progress and development, especially when geological environments are increasingly affected by human engineering activities [3]. Therefore, landslide prediction is of great significance for landslide prevention and control [4,5]. One of the greatest tasks of landslide disaster and risk mitigation is to prepare landslide susceptibility maps [6].…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…A landslide is one of the most familiar and disastrous geological hazards with great destructiveness, which always poses a serious threat to human life, property, and living environment, and restricts human progress and development, especially when geological environments are increasingly affected by human engineering activities [3]. Therefore, landslide prediction is of great significance for landslide prevention and control [4,5]. One of the greatest tasks of landslide disaster and risk mitigation is to prepare landslide susceptibility maps [6].…”
Section: Introductionmentioning
confidence: 99%
“…Landslide susceptibility mapping is a typical complex nonlinear problem in a large area of a landslide research area [5]. Thus, the results obtained by statistical techniques and statistical methods may not be able to achieve satisfactory accuracy [5,40].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The results also illustrate that the hybrid model generally improves the prediction ability of a single landslide susceptibility model.Water 2020, 12, 113 2 of 29 weights of evidence [10][11][12], frequency ratio [13][14][15][16][17], logistic regression [18][19][20][21], linear multivariate regression, multivariate adaptive regression spline [22][23][24], and statistical index [25,26] have been widely used. However, these traditional statistical methods do not provide satisfactory evaluation of the correlation between landslide influencing factors [4,27].Therefore, machine learning technologies have drawn extensive attention, and many kinds of machine learning methods have been developed and used, such as classification and regression trees [28,29], adaptive neuro-fuzzy inference systems [30,31], fuzzy logic [32,33], alternating decision trees [34][35][36], support vector machine [37][38][39], artificial neural networks [40,41], and random forest [4,[42][43][44][45]. In particular, hybrid models are increasingly used, such as the rotation forest-based decision trees [46,47], frequency ratio-based ANFIS model [48]…”
mentioning
confidence: 99%
“…Therefore, machine learning technologies have drawn extensive attention, and many kinds of machine learning methods have been developed and used, such as classification and regression trees [28,29], adaptive neuro-fuzzy inference systems [30,31], fuzzy logic [32,33], alternating decision trees [34][35][36], support vector machine [37][38][39], artificial neural networks [40,41], and random forest [4,[42][43][44][45]. In particular, hybrid models are increasingly used, such as the rotation forest-based decision trees [46,47], frequency ratio-based ANFIS model [48], bagging-based reduced error pruning trees [49], and multiboost-based support vector machines [50].…”
mentioning
confidence: 99%