Water resources modeling can provide valuable information to planners. In this respect, water yield is an ecosystem service with significant roles in the sustainability of societies and ecosystems. The present study aimed to model the supply and demand of water resources and identify their scarcity and stress in the Sirvan river basin. For this purpose, we employed the ecosystem services concept as new thinking in earth sciences and using soil, climate, and land use data. Firstly, the Landsat satellite images of 2019 were prepared after different corrections, and the land use map was produced. Then, precipitation, evapotranspiration, root restricting layer depth, and evapotranspiration coefficients of the land uses were prepared and modeled in InVEST 3.8.9 software environment. The findings indicated that the water yield in this river basin is 5,381 million m3, with sub-basins 5, 11, and 1 having the highest water yield per year and sub-basin 2 having the lowest water yield. Moreover, sub-basins 5 and 11 had the highest water consumption. Based on the estimated water scarcity and stress index, sub-basin 8 has experienced water scarcity and sub-basin 4 water stress. We conclude that applying the InVEST Water Yield model to assess water resource status at the basin and sub-basins level can provide suitable results for planning.