Glaciers distinct from the Greenland and Antarctic ice sheets cover an area of approximately 706,000 square kilometres globally 1 , with an estimated total volume of 170,000 cubic kilometres, or 0.4 metres of potential sea-level-rise equivalent 2. Retreating and thinning glaciers are icons of climate change 3 and affect regional runoff 4 as well as global sea level 5,6. In past reports from the Intergovernmental Panel on Climate Change, estimates of changes in glacier mass were based on the multiplication of averaged or interpolated results from available observations of a few hundred glaciers by defined regional glacier areas 7-10. For data-scarce regions, these results had to be complemented with estimates based on satellite altimetry and gravimetry 11. These past approaches were challenged by the small number and heterogeneous spatiotemporal distribution of in situ measurement series and their often unknown ability to represent their respective mountain ranges, as well as by the spatial limitations of satellite altimetry (for which only point data are available) and gravimetry (with its coarse resolution). Here we use an extrapolation of glaciological and geodetic observations to show that glaciers contributed 27 ± 22 millimetres to global mean sea-level rise from 1961 to 2016. Regional specific-mass-change rates for 2006-2016 range from −0.1 metres to −1.2 metres of water equivalent per year, resulting in a global sea-level contribution of 335 ± 144 gigatonnes, or 0.92 ± 0.39 millimetres, per year. Although statistical uncertainty ranges overlap, our conclusions suggest that glacier mass loss may be larger than previously reported 11. The present glacier mass loss is equivalent to the sea-level contribution of the Greenland Ice Sheet 12 , clearly exceeds the loss from the Antarctic Ice Sheet 13 , and accounts for 25 to 30 per cent of the total observed sea-level rise 14. Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century, while heavily glacierized regions will continue to contribute to sea-level rise beyond 2100. Changes in glacier volume and mass are observed by geodetic and glaciological methods 15. The glaciological method provides glacier-wide mass changes by using point measurements from seasonal or annual in situ campaigns, extrapolated to unmeasured regions of the glacier. The geodetic method determines glacier-wide volume changes by repeated mapping and differencing of glacier surface elevations from in situ, airborne and spaceborne surveys, usually over multiyear to decadal periods. In this study, we used glaciological and geodetic data from the World Glacier Monitoring Service (WGMS) 16 , complemented by new and as-yet-unpublished geodetic assessments for glaciers in Africa,