Objective
Glioblastoma Multiforme (GBM), a devastating the most common primary malignant intracranial brain tumors. In India, the incidence of this malignancy is escalating, however, there are very few studies on this tumor entity from Indian population. The present study sought to investigate the prevalence and prognostic significance of Signal Transducer and Activator of Transcription 3 (STAT3) gene expression in GBM patients from Western India.
Method
STAT3 gene expression using real-time PCR was detected in total 55 GBM patients. The impact of STAT3 aberrant expression on progression-free survival (PFS) and overall (OS) was analysed using univariate and multivariate survival analysis. The data were analysed using SPSS statistical software and p value ≤0.05 was considered as significant.
Results
The aberrant STAT3 expression was found in 85% (47/55) of patients with -1.12 fold change down-regulation in 49% (23/47) and 3.36 fold change up-regulation was noted in 51% (24/47) of patients. In wild type IDH tumors (n=30), down regulation and up regulation of STAT3 was noted in 63% and 27% of patients, respectively, whereas, for IDH mutant GBM tumors (n=25), the incidence of low expression and high expression of STAT3 was noted in 16% and 68% of patients, respectively. Thus, we found that incidence of STAT3 down regulation was significantly high in patients with IDH wild type tumors, whereas, in IDH mutant GBM tumors, the incidence of up-regulated STAT3 was significantly high (P=0.021, χ2=12.81, r=+0.310). In Kaplan-Meier univariate survival analysis, a part from age (P=0.006), tumor location (P=0.025), and KPS score (P=0.002), co-detection of STAT3 up regulation and presence of IDH mutation (P=0.030) remained significant prognostic factors for PFS and OS. In multivariate survival analysis also, co-detection of STAT3 high expression and presence of IDH mutation remained independent prognosticators for PFS (HR=6.45, 95% CI=1.32-31.40, P=0.021) and OS (HR=8.69, 95% CI=1.66-45.51, P=0.010).
Conclusion
For GBM tumors, STAT3 up-regulation and presence of IDH mutations together predicts better survival. This reflects unique molecular etiology for GBM patients. Therefore, they would be useful in the future for targeted therapy and for clinicians they would be useful for better patient management. However, study on a larger sample size is required for validation.