Surveillance systems in video sequences have been widely used to monitor scenes in various environments, such as airports, banks, schools, industries, bus and train stations, highways and stores. Due to the large amount of information obtained via surveillance cameras, the use of visual inspection by camera operators becomes a task subject to fatigue and failure, in addition to consuming a lot of time. One challenge is the development of intelligent surveillance systems capable of analyzing long video sequences captured by a network of cameras in order to identify a certain behavior. In this work, we propose and analyze the use of several classification techniques, based on the CENTRIST (Transformation Census Histogram) operator, in the context of identifying violent events in video scenes. Additionally, we evaluated other traditional descriptors, such as HoG (Oriented Gradient Histogram), HOF (Optical Flow Histogram) and descriptors extracted from pre-trained deep machine learning models. In order to allow the evaluation only in regions of interest present in the video frames, we investigated techniques for removing the background from the scene. A sliding window-based approach was used to assess smaller regions of the scene in combination with a voting criterion. The sliding window is then applied along with block filtering using the optical flow of the scene. To demonstrate the effectiveness of our method for discriminating violence in crowd scenes, we compared the results to other approaches available in the literature in two public databases (Violence in Crowds and Hockey Fights). The combination of CENTRIST and HoG was demonstrated in comparison to the use of these operators individually. The combination of both operators obtained approximately 88% against 81% using only HoG and 86% using CENTRIST. From the refinement of the proposed method, we identified that evaluating blocks of the frame with the sliding window-based approach made the method more effective. Techniques for generating a codebook with sparse coding, distance measurement with a Gaussian mixture model and distance measurement between clusters were evaluated and discussed. Also we dynamically calculate the threshold for class voting, which obtained superior results in some cases. Finally, strategies for restricting the actors present in the scenes using optical flow were analyzed. By using the Otsu's method to calculate the threshold from the optical flow at the scene, the effectiveness surpasses our most competitive results: 91.46% accuracy for the Violence in Crowds dataset and 92.79% for the Hockey Fights dataset.