In this paper we show that the following four-dimensional system of difference equations
x
n
+
1
=
y
n
α
z
n
−
1
β
,
y
n
+
1
=
z
n
γ
t
n
−
1
δ
,
z
n
+
1
=
t
n
ϵ
x
n
−
1
μ
,
t
n
+
1
=
x
n
ξ
y
n
−
1
ρ
,
n
∈
N
0
,
$$\begin{array}{}
\displaystyle
x_{n+1}=y_{n}^{\alpha}z_{n-1}^{\beta}, \quad y_{n+1}=z_{n}^{\gamma}t_{n-1}^{\delta}, \quad z_{n+1}=t_{n}^{\epsilon}x_{n-1}^{\mu}, \quad t_{n+1}=x_{n}^{\xi}y_{n-1}^{\rho},
\qquad n\in \mathbb{N}_{0},
\end{array}$$
where the parameters α, β, γ, δ, ϵ, μ, ξ, ρ ∈ ℤ and the initial values x
–i
, y
–i
, z
–i
, t
–i
, i ∈ {0, 1}, are real numbers, can be solved in closed forms, extending further some results in literature.