2022
DOI: 10.48550/arxiv.2206.06288
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Global behaviour of solutions stable at infinity for gradient systems in higher space dimension: the no invasion case

Abstract: This paper is concerned with parabolic gradient systems of the formwhere space variable x and state variable u are multidimensional, and the potential V is coercive at infinity. For such systems, the asymptotic behaviour of solutions stable at infinity, that is approaching a stable spatially homogeneous equilibrium as |x| goes to +∞, is investigated. A partial description of the global asymptotic behaviour of such a solution is provided, depending on the mean speed of growth of the spatial domain where the sol… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?