1986
DOI: 10.1090/conm/055.1/862639
|View full text |Cite
|
Sign up to set email alerts
|

Global class field theory of arithmetic schemes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
115
0
6

Year Published

1986
1986
2015
2015

Publication Types

Select...
9
1

Relationship

1
9

Authors

Journals

citations
Cited by 87 publications
(122 citation statements)
references
References 0 publications
1
115
0
6
Order By: Relevance
“…[10,14]). r~EP By definition, (2.9) implies that (co, a)x=0 for any o2~Br(K) and a~I K in the diagonal image of K*.…”
Section: H'(a) • Kj(a)-~ H'+ J(a)mentioning
confidence: 99%
“…[10,14]). r~EP By definition, (2.9) implies that (co, a)x=0 for any o2~Br(K) and a~I K in the diagonal image of K*.…”
Section: H'(a) • Kj(a)-~ H'+ J(a)mentioning
confidence: 99%
“…On note Sm/S Nis le site formé par la catégorie Sm/S des schémas lisses, séparés et de type fini sur S, munie de la topologie de Nisnevich (aussi appelée « hensélienne », cf. [21]). On pose SH (S) = SH D'après la remarque 3.36, la catégorie SH (S) définie ici est équivalente à celle de [20].…”
Section: Catégories Homotopiques Stables D'un Schéma Noethérienunclassified
“…Note, if dimX = 1, then π 1 (X) = Gal(F S |F), where S is the set of places of F not related to X. Kato and Saito [7] describe π ab 1 (X) by higher dimensional Milnor K-theory. Instead of the completions F v they use higher dimensional local fields associated to X by a flag of subschemes of X [4][5][6].…”
Section: Introductionmentioning
confidence: 99%