1986
DOI: 10.1109/tit.1986.1057168
|View full text |Cite
|
Sign up to set email alerts
|

Global convergence and empirical consistency of the generalized Lloyd algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
77
0
2

Year Published

1993
1993
2017
2017

Publication Types

Select...
4
3
3

Relationship

0
10

Authors

Journals

citations
Cited by 114 publications
(79 citation statements)
references
References 11 publications
0
77
0
2
Order By: Relevance
“…일반적인 데이터 압축 기술은 코드북 학습을 위해 서 Generalized Lloyd Algorithm (GLA)을 사용한다 [10] . 이 알고리즘은 N개의 centroid들을 임의로 분포시키 의 centroid로 선언하고, centroid를 2의 자승으로 분할 하면서 GLA를 수행하게 된다 [11] .…”
Section: 기존 양자화 방식unclassified
“…일반적인 데이터 압축 기술은 코드북 학습을 위해 서 Generalized Lloyd Algorithm (GLA)을 사용한다 [10] . 이 알고리즘은 N개의 centroid들을 임의로 분포시키 의 centroid로 선언하고, centroid를 2의 자승으로 분할 하면서 GLA를 수행하게 된다 [11] .…”
Section: 기존 양자화 방식unclassified
“…It is a descent algorithm [13], i.e., it reduces the average distortion of the codebook with every iteration. However, the GLA is not guaranteed to find the global optimal codebook for non-convex distortion functions [15], since it may get trapped in a local minimum.…”
Section: A Codebook Designmentioning
confidence: 99%
“…However, it is important to realize that the corollary does not imply that the underlying partitioning {π (t) j } k j=1 converges. We refer the reader interested in more general convergence results to Pollard (1982) and Sabin and Gray (1986).…”
Section: Spherical K-meansmentioning
confidence: 99%