Conjugate gradient methods are much effective for large‐scale unconstrained optimization problems by their simple computations and low memory requirements. The Perry conjugate gradient method has been considered to be one of the most efficient methods in the context of unconstrained minimization. However, a globally convergent result for general functions has not been established yet. In this paper, an improved three‐term Perry‐type algorithm is proposed which automatically satisfies the sufficient descent property independent of the accuracy of line search strategy. Under the standard Wolfe line search technique and a modified secant condition, the proposed algorithm is globally convergent for general nonlinear functions without convexity assumption. Numerical results compared with the Perry method for stability, two modified Perry‐type conjugate gradient methods and two effective three‐term conjugate gradient methods for large‐scale problems up to 300,000 dimensions indicate that the proposed algorithm is more efficient and reliable than the other methods for the testing problems. Additionally, we also apply it to some image restoration problems.