A viral respiratory disease, MERS spread by a novel coronavirus, was first detected in Saudi Arabia in 2012. It is a big threat for the Arab community and is a horrible prediction that the disease may rapidly propagate to other parts of the world. In this research endeavor, a mathematical model of MERS-Corona virus (MERS-CoV) is presented. Initially, we formulate a model, governing the dynamics of MERS-CoV disease and then determine basic reproductive number [Formula: see text]. Local stability analysis results are formulated at the equilibrium points. It has been found that one of the eigenvalues is zero, therefore bifurcation exists. Afterward, in formulating proper Lyapunov functional [J. P. LaSalle, The Stability of Dynamical Systems, Vol. 25 (Society for Industrial and Applied Mathematics, 1976)], we successfully established results about global stability of the proposed model at both equilibrium points. Sensitivity analysis of the parameters as well as of threshold value for the underlying model has been exhibited. The numerical illustration of theoretical findings is explained via examples.