“…That is, the deterministic approach provides an overall insight about the disease spreading in a fast way, whereas the stochastic framework provides statistical insights into the transmission events providing a range of possible epidemic scenarios [22]. Deterministic models tend to present results that do not undergo major changes due to fluctuations in the population, but undergo significant changes if the parameters inserted in the differential equations are modified; in this context, the stochastic models are more responsive to quantitative changes both in the populations and subpopulations, as well as in the modeling parameters, making it important to emphasize that there are several ways of working probabilities in stochastic processes as addressed above, which makes these models too complex and difficult to interpret [22,30,35]. Moreover, both deterministic and stochastic models share the challenge in representing the natural history of infectious diseases, considering sources of infection, transmission routes, incubation period, infection and transmissibility periods, treatment, and development of natural immunity, which are parameters that can be implemented in mathematical systems through three ways: i) Using data already described in the literature [36], ii) Empirically through estimations with basis on epidemiological data [37,38], or iii) Estimated by computer programs using statistical methods such as root mean square error on epidemiological data [17].…”