The severity of systemic meningococcal disease (SMD) correlates to plasma concentrations of LPS and IL-10, with the highest levels detected in non-survivors. Here, plasma from patients with SMD containing high and low concentrations of LPS were incubated with human monocytes before and after immunodepletion of IL-10 to study the effect of IL-10 on gene expression and cytokine release. Patient plasma containing IL-10 induced the expression of 1657 genes in human monocytes when compared with gene expression induced by low LPS plasma. After immunodepletion of IL-10, this number increased to 2260. By directly comparing the gene expression profiles induced before and after immunodepletion of IL-10, the presence of IL-10 differentially regulated 373 genes. Functional classes associated with these genes were cellular function and maintenance, cellular development, cellular growth and proliferation, cell-cell signaling and interaction and cellular movement. Immunodepletion of IL-10 resulted in down-regulation of genes of the leukocyte immunoglobulin-like receptor family, and up-regulation of genes of type I IFN signaling, TLR signaling, the inflammasomes, coagulation and fibrinolysis. Finally, immunodepletion of IL-10 increased the protein levels of IL-1β, IL-8, TNF-α, MIP-1α and MIP-1β. Data suggest that IL-10 in meningococcal sepsis plasma regulates a variety of genes and signaling pathways, likely leading to an overall inhibitory effect on the inflammatory response induced in meningococcal sepsis.